Главная страница
russian   english
16+
<< назад

Название статьи

INFINITESIMAL ISOMETRIES OF GENERALIZED METRICS


Номер журнала
1
Дата выпуска
2005

Тип статьи
научная статья
Коды УДК
514.7
Страницы
162-171
Ключевые слова
 

Авторы
Lovas R.L.

Место работы
Lovas R.L.
Institute of Mathematics University of Debrecen, H-4010 Debrecen, P.O. Box 12, Hungary


Аннотация
We consider a manifold endowed with a metric tensor in the pull-back bundle of its tangent bundle over its own projection. We shall give necessary and sufficient conditions for a vector field to be an infinitesimal isometry of a metric of this type in general and for some special classes. We also examine translations, i.e., the special class of Killing vector fields whose integral curves are geodesies of an associated Finsler manifold. As an application, we determine the Killing vector fields of Funk metrics

Загрузить статью

Библиографический список
1 . Eisenhart L. P. Riemannian Geometry / Princeton University Press, 1960. [2] Horvath J. I. und Moor A. // Indagationes Math., 17, 1955, 421, 581. [3] Lovas R. L. // Period. Math. Hungar. 48 (1-2), 2004, 165.
2 . Marsden J. E., Montgomery R. and Ratiu T. Reduction, symmetry and phases in mechanics. Memoirs of the American Mathematical Society. 436.
3 . Martinez E., Carinena J. F. and Sarlet W. // Diff. Geometry and its Applications. 2, 1992, 17.
4 . Mestdag Т., Szilasi J. and Toth V. // Publ. Math. Debrecen. 62/3-4, 2003, 511.
5 . Rund H. The Differential Geometry of Finsler Spaces. Berlin: Springer Verlag, 1959.
6 . Sakai T. Riemannian Geometry / American Mathematical Society, Providence, 1996.
7 . Shen Z. Differential Geometry of Spray and Finsler Spaces / Kluwer Academic Publishers, Dordrecht, 2001.
8 . Szilasi J. A Setting for Spray and Finsler Geometry, in: Handbook of Finsler Geometry. Vol. 2 (ed. P. L. Antonelli) / Kluwer Academic Publishers, Dordrecht, 2003.
9 . Takano Y. // Proc. Intern. Symp. Relativity &; Unified Field Theory. Calcutta, India, 1975. P. 17.