INFINITESIMAL ISOMETRIES OF GENERALIZED METRICS |
1 | |
2005 |
научная статья | 514.7 | ||
162-171 |
We consider a manifold endowed with a metric tensor in the pull-back bundle of its tangent bundle over its own projection. We shall give necessary and sufficient conditions for a vector field to be an infinitesimal isometry of a metric of this type in general and for some special classes. We also examine translations, i.e., the special class of Killing vector fields whose integral curves are geodesies of an associated Finsler manifold. As an application, we determine the Killing vector fields of Funk metrics |
![]() |
1 . Eisenhart L. P. Riemannian Geometry / Princeton University Press, 1960. [2] Horvath J. I. und Moor A. // Indagationes Math., 17, 1955, 421, 581. [3] Lovas R. L. // Period. Math. Hungar. 48 (1-2), 2004, 165. 2 . Marsden J. E., Montgomery R. and Ratiu T. Reduction, symmetry and phases in mechanics. Memoirs of the American Mathematical Society. 436. 3 . Martinez E., Carinena J. F. and Sarlet W. // Diff. Geometry and its Applications. 2, 1992, 17. 4 . Mestdag Т., Szilasi J. and Toth V. // Publ. Math. Debrecen. 62/3-4, 2003, 511. 5 . Rund H. The Differential Geometry of Finsler Spaces. Berlin: Springer Verlag, 1959. 6 . Sakai T. Riemannian Geometry / American Mathematical Society, Providence, 1996. 7 . Shen Z. Differential Geometry of Spray and Finsler Spaces / Kluwer Academic Publishers, Dordrecht, 2001. 8 . Szilasi J. A Setting for Spray and Finsler Geometry, in: Handbook of Finsler Geometry. Vol. 2 (ed. P. L. Antonelli) / Kluwer Academic Publishers, Dordrecht, 2003. 9 . Takano Y. // Proc. Intern. Symp. Relativity &; Unified Field Theory. Calcutta, India, 1975. P. 17. |