The possibilities of using large eddy simulation (Large Eddy Simulation - LES) to calculate complex turbulent jets are considered. To conserve resources for simultaneous calculation of flows in nozzles and jets, the averaged Navier-Stokes equations (Reynolds Average Navier - Stokes - RANS) were used to calculate the flow within the nozzle; LES was used outside the nozzle. Various types of complex turbulent jets have been investigated. Spreading in the transverse direction was received for initially circular wall jet, «revolution of axes» in a rectangular jet was also observed. The potential of RANS/LES methods for calculating turbulent compressible jets from nozzles of different shapes, the influence of nozzle geometry on the characteristics of turbulence in the jet is demonstrated. A possible explanation of the increase of high-frequency noise in the chevron nozzles is given.
|