Главная страница
russian   english
16+
<< назад

Название статьи

ОБЗОР МЕТОДОВ ПОИСКА И СОПРОВОЖДЕНИЯ ТРАНСПОРТНЫХ СРЕДСТВ НА ПОТОКЕ ВИДЕОДАННЫХ


Номер журнала
5
Дата выпуска
2012

Тип статьи
научная статья
Коды УДК
004.932
Страницы
348-358
Ключевые слова
компьютерное зрение, машинное обучение, поиск объектов на изображении, сопровождение объектов на видео, извлечение признаков, особые точки, детектор, дескриптор

Авторы
Золотых Николай Юрьевич
Кустикова Валентина Дмитриевна
Мееров Иосиф Борисович

Место работы
Золотых Николай Юрьевич
Нижегородский госуниверситет им. Н.И. Лобачевского

Кустикова Валентина Дмитриевна
Нижегородский госуниверситет им. Н.И. Лобачевского

Мееров Иосиф Борисович
Нижегородский госуниверситет им. Н.И. Лобачевского


Аннотация
Приводится классификация методов детектирования транспортных средств на участке дорожной трассы. Рассматриваются преимущества и недостатки предлагаемых подходов. Описывается общая схема решения задачи с использованием методов компьютерного зрения. Рассматриваются методы поиска и последующего сопровождения объектов на потоке видеоданных.

Загрузить статью

Библиографический список
1 . Traffic counting methods [http://people.hofstra.edu/ geotrans/eng/ch9en/meth9en/ch9m2en.html].
2 . A summary of vehicle detection and Surveillance Technologies used in Intelligent Transportation Systems [http://www.fhwa.dot.gov/policyinformation/pubs/vdstits2007/vdstits2007.pdf].
3 . Marsh Products, Inc. [http://www.marshproducts. com].
4 . RAI Products [http://www.raiproducts.com/ vehicle-detection-systems.html].
5 . International Road Dynamics Inc. [http://www.ir-dinc.com/products/sensors_accessories/on_road_sensors/].
6 . Vaxtor Systems [www.vaxtor.com].
7 . Архив новостей по рубрике Digital Signal Processing [http://www.compeljournal.ru/enews/rubric/ dsp].
8 . Технология DaVinci – новая эра в цифровой обработке видеосигнала [http://www.compeljournal.ru/ images/articles/2005_10_4.pdf].
9 . Quartics Products (integrated circuits for advanced video digital video processing) [http://www.quar-tics.com/products.html].
10 . Application-Specific Integrated Circuit [http:// www.siliconfareast.com/asic.htm].
11 . Arth C., Limberger F., Bischof H. Real-Time License Plate Recognition on an Embedded DSP-Platform // Proceedings of the Conference on Computer Vision and Pattern Recognition. 2007.
12 . Hirose K., Torio T., Hama H. Robust Extraction of Wheel Region for Vehicle Position Estimation using a Circular Fisheye Camera // International Journal of Computer Science and Network Security. 2009. V. 9. №12.
13 . Sivaraman S., Trivedi M.M. A General Active-Learning Framework for On-Road Vehicle Recognition and Tracking //IEEE Transactions on Intelligent Transportation Systems. 2010. V.11. № 2. P. 267–276.
14 . Kim Z.W., Malik J. Fast Vehicle Detection with Probabilistic Feature Grouping and its Application to Vehicle Tracking // Proceedings of the ICCV’03. 2003. V. 1. P. 524–531.
15 . Tsai Y.M., Tsai C.C., Huang K.Y., Chen L.G. An intelligent vision-based vehicle detection and tracking system for automotive applications // Proceedings of the IEEE International Conference on Consumer Electronics. 2011. P. 113–114.
16 . Amit Y. 2D Object Detection and Recognition: models, algorithms and networks. The MIT Press, 2002. 325 p.
17 . Shotton J., Blake A., Cipolla R. Contour-based Learning for Object Detection // Proceedings of the 10th IEEE International Conference on Computer Vision (ICCV’05). 2005. V.1. P. 503–510.
18 . Torralba A., Murphy K.P., Freeman W.T., Rubin M.A. Contex-based Vision System for Place and Object Recognition // Proceedings of the 9th IEEE International Conference on Computer Vision (ICCV’03). 2003. V. 1. P. 273–283.
19 . Myung Jin Choi, Lim J.J., Torralba A., Willsky A.S. Exploiting Hierarchical Contex on a Large Database of Object Categories // Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR’10). 2010. P. 129–136.
20 . Felzenszwalb P.F., Girshick R.B., McAllester D., Ramanan D. Object Detection with Discriminatively Trained Part Based Models // IEEE Transactions on Pattern Analysis and Machine Intelligence. 2010. V. 32. №9. P. 1627–1645.
21 . Druzhkov P.N., Eruhimov V.L., Kozinov E.A., et al. On some new object detection features in OpenCV library // Pattern Recognition and Image Analysis: Advances in Mathematical Theory and Applications. 2011. V. 21. №3. P. 384–386.
22 . Viola P., Jones M.J. Robust Real-Time Face Detection // International Journal of Computer Vision. 2004. №57(2). P. 137–154.
23 . Viola P., Jones M.J. Rapid object detection using a boosted cascade of simple features // Proceedings of the IEEE Conf. on Computer Vision and Pattern Recognition. 2001.
24 . Pentland A., Choudhury T. Face Recognition for Smart Environments // IEEE Computer Vision. 2000. P. 50–55.
25 . Alonso D., Saldaro L., Nieto M. Robust Vehicle Detection through Multidimensional Classification for on Broad Video Based Systems // IEEE. 2007.
26 . Dalal N., Triggs B. Histograms of oriented gradients for human detection // Proceedings of the CVPR’05. 2005.
27 . Viola P., Jones M.J., Snow D. Detecting pedestrians using patterns of motion and appearance // Proceedings of the 9th International Conference on Computer Vision (ICCV’03). 2003. V. 1. P. 734–741.
28 . Gavrila D.M., Giebel J., Munder S. Vision-based pedestrian detection: the protector system // Proceedings of the IEEE Intelligent Vehicles Symposium, Parma, Italy. 2004. P. 13–18.
29 . Hilario C., Collado J.M., Armingol J.M., Escalera A. Pyramidal Image Analysis for Vehicle Detection // Proceedings to Intelligent Vehicles Symposium. 2005. P. 88–93.
30 . Szeliski R. Computer Vision: Algorithms and Applications. Springler, 2010. 979 p.
31 . Форсайт Д., Понс Ж. Компьютерное зрение. Современный подход. М.: Изд. дом «Вильямс», 2004. 465 с.
32 . Bradski G., Kaehler A. Learning OpenCV Computer Vision with OpenCV Library. O' Reilly Media Publishers, 2008. 571p.
33 . Sonka M., Hlavac V., Boyle R. Image Processing, Analysis and Machine Vision. Thomson, 2008. 866 p.
34 . Leibe B., Leonardis A., Schiele B. Robust Object Detection with Interleaved Object Categoization and Segmentation. Springler Science + Business Media, LLC, 2007.
35 . Lee P.H., Chiu T.H., Lin Y.L., Hung Y.P. Real-time pedestrian and vehicle detection in video using 3D cues // Proceedings of the 2009 IEEE international conference on Multimedia and Expo (ICME’09). 2009. P. 614–617.
36 . Horn B., Schunk B. Determing Optical Flow // MIT Artificial Intelligence Laboratory. 1980. №572.
37 . Wang J.Y.A., Adelson E.H. Representing moving images with layers // IEEE Transactions on Image Processing. 1994. 3(5). P. 625–638.
38 . Kumar M.P., Torr P.H.S., Zisserman A. Learning Layered Motion Segmentations of Video // International Journal of Computer Vision (IJCV). 2008. V.76, №3. P. 311–319.
39 . Yilmaz A., Javed O., Shah M. Object tracking: A survey // ACM Computing Surveys. 2006. V. 38, № 4. Article 13.
40 . Veenman C., Reinders M., Backer E. Resolving motion correspondence for densely moving points // IEEE Trans. Pattern Analysis Machine Intelligence. 2001. V.23, № 1. P. 54–72.
41 . Salarpour Amir, Salarpour Arezoo, Fathi M., Dezfoulian MirHossein Vehicle tracking using Kalman filter and features // Signal & Image Processing: An International Journal (SIPIJ). 2011. V. 2, №2.
42 . Dan S., Baojun Zh., Linbo T. A Tracking Algorithm Based on SIFT and Kalman Filter // Proceedings The 2nd International Conference on Computer Application and System Modeling. 2012. P. 1563–1566.
43 . Ning Li. Corner feature based object tracking using adaptive Kalman filter // Proceedings of the 9th International Conference on Signal Processing (ICSP 2008). 2008. P. 1432–1435.
44 . Isard M., Blake A. Condensation - conditional density propagation for visual tracking // Int. J. Comput. Vision. 1998. V. 29. №1. P. 5–28.
45 . Gustafsson F., Gunnarsson F., Bergman N. et al. Particle Filters for Positioning, Navigation and Tracking // IEEE Transactions on Signal Processing. 2002. Vol. 2. Is. 2. P. 425–437.
46 . Particle Filter Object Tracking [http://blogs.ore-gonstate.edu/hess/code/particles/].
47 . Comaniciu D., Ramesh V., Meer P. Real-time tracking of non-rigid objects using mean shift // Proceedings of the CVPR’00. 2000. V. 2. P. 142–149.
48 . Exner D., Bruns E., Kurz D., Grundhofer A. Fast and robust CAMShift tracking // Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops. 2010. P. 9–16.
49 . Formal Description of Moravec detector [http://kiwi.cs.dal.ca/~dparks/CornerDetection/moravec.htm].
50 . Tuytelaars T., Mikolajczyk K. Local Invariant Feature Detectors: A Survey // Foundation and Trends in Computer Vision. 2007. V. 3. №3. P. 177–280.
51 . Harris/Plessey Operator [http://kiwi.cs.dal.ca /~dparks/CornerDetection/harris.htm].
52 . Mikolajczyk K., Schmid C. Scale and affine invariant interest point detectors // International Journal of Computer Vision. 2004. №60(1). P. 63–86.
53 . Matas J., Chum O., Urban M., Pajdla T. Robust wide baseline stereo from maximally stable extremal regions // British Machine Learning Conference. 2002. P. 384–393.
54 . Lindeberg T. Feature detection with automatic scale selection // International Journal of Computer Vision. 1998. V.30. Is. 2.
55 . Lowe D. Distinctive image features from scale-invariant keypoints // International Journal of Computer Vision. 2004. № 60. P. 91–110.
56 . Rosten E., Drummond T. Machine Learning for high-speed corner detection // Proceedings of the 9th European Conference on Computer Vision (ECCV’06). 2006. P. 430–443.
57 . Ke Y., Sukthankar R. PCA-SIFT: A more distinctive representation for local image descriptors // Proceedings of the Conference on Computer Vision and Pattern Recognition (CVPR’04). 2004. V. 2. P. 506–513.
58 . Hastie T., Tibshirani R., Freidman J. The elements of statistical learning. Data mining, inference and prediction. 2001. 745 p.
59 . Bay H., Ess A., Tuytelaars T., Gool L.V. SURF: speed up robust features // Computer Vision and Image Understanding (CVIU). 2008. V. 110, № 3. P. 346–359.
60 . Tola E., Lepetit V., Fua P. A Fast Local Descriptor for Dense Matching // Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR’08). 2008. P. 1–8.
61 . Calonder M., Lepetit V., Strecha C., Fua P. BRIEF: Binary Robust Independent Elementary Features // Proceedings of the 11th European Conference on Computer Vision (ECCV’10). 2010.
62 . Rublee E., Rabaud V., Konolige K., Bradski G. ORB: an efficient alternative to SIFT or SURF // Proceedings of the International Conference on Computer Vision (CVPR’11). 2011. P. 2564–2571.
63 . Mikolajczyk K., Schmid C. A Performance Evaluation of Local Descriptors // IEEE Transactions on Pattern Analysis and Machine Intelligence. 2005. V. 27, № 10. P. 1615–1630.
64 . Koen E.A., Gevers T., Snoek C.G.M. Evaluating color descriptors for object and scene recognition // IEEE Transactions on Pattern Analysis and Machine Intelligence. 2010. V. 32, № 9. P. 1615–1630.
65 . Comparison of the OpenCV’s feature detection algorithms [http://computer-vision-talks.com/2011/01/ comparison-of-the-opencvs-feature-detection-algo-rithms-2/].
66 . Gauglitz S., Holerer T., Turk M. Evaluation of Interest Point Detectors and Feature Descriptors for Visual Tracking [http://cs.iupui.edu/~tuceryan/pdf-reposi-tory/Gauglitz2011.pdf].
67 . Horn B.K.P., Schunck B.G. Determining optical flow // MIT, Artificial Intelligence Laboratory. 1980.
68 . Shi J., Tomasi C. Good features to track // IEEE. 1994. P. 593–600.
69 . Jin H., Favaro P., Soatto S. Real-time tracking and outlier rejection with changes in illumination // Proceedings of the ICCV’01. 2001. V. 1. P. 684–689.
70 . Barron J.L., Fleet D.J., Beauchemin S.S. Performance of optical flow techniques // International Journal of Computer Vision. 1994. V. 12. №1. P. 43–77.
71 . Kalal Z., Mikolajczyk K., Matas J. Forward-backward error: automatic detection of tracking failures // Proceedings of the ICPR’10. 2010. P. 2756–2759.
72 . Описание алгоритма Predator [http://robot-develop.org/archives/4463].
73 . Cucchiara R., Grana C., Piccardi M., Prati A. Statistical and knowledge based moving object detection in traffic scene // Proceedings of the IEEE Int’l Con-ference on Intelligent Transportation Systems. 2000. P. 27–32.
74 . Cucchiara R., Grana C., Piccardi M. et al. Improving Shadow Suppression in Moving Object Detection with HSV Color Information // Proceedings of the IEEE International Conference on the Intelligent Transportation Systems. 2001. P. 334–339.
75 . Fung G.S.K., Yung N.H.C., Pang G.K.H., Lai A.H.S. Towards Detection of Moving Cast Shadows for Visual Traffic Surveillance // Systems, Man, and Cybernetics. 2001. V. 4. P. 2505–2510.
76 . Sanin A., Sanderson C., Lovell B.C. Shadow Detection: A Survey and Comparative Evaluation of Recent Methods // Pattern Recognition. 2012. V. 45, №4. P. 1684–1695.
77 . Arrospide J., Salgado L., Nieto M., Jaureguizar F. Robust Vehicle detection through multidimensional clas- sification for on broad video based systems // Proceedings of the ICIP’08. 2008. P. 2008–2011.
78 . Шапиро Л., Стокман Дж. Компьютерное зрение. М.: Бином. Лаборатория знаний, 2006. 752 с.
79 . Tamersoy B., Aggarwal J.K. Robust Vehicle Detection for Tracking in Highway Surveillance Videos using Unsupervised Learning // Advanced Video and Sig-nal Based Surveillance (AVSS '09). 2009. P. 529–534.
80 . Ballard D.H. Generalizing the Hough transform to detect arbitrary shapes // Readings in computer vision: issues, problems, principles and paradigms. San Francisco: Morgan Kaufmann Publishers Inc., 1987. P. 111–122.
81 . Sun Z., Bebis G., Miller R. On-road vehicle detection using Gabor filters and support vector machines // Digital Signal Processing. 2002. V. 2. P. 1019–1022.