СИГНАЛЬНЫЕ ПРОЦЕССЫ В МОЗГЕ: ОБРАБОТКА МНОГОКАНАЛЬНЫХ ДАННЫХ И ВИРТУАЛЬНЫЕ НЕЙРОННЫЕ СЕТИ |
3 | |
2013 |
научная статья | 001.57.004.942 | ||
231-239 | нейронная сеть, синаптическая связь, паттерны активности, мультиграф, нейронные отростки, конус роста |
Представлены методы анализа сигналов активности, формируемых в культивируемых нейронных сетях и регистрируемых мультиканальными электрофизиологическими зондами. Методы, включающие использование паттернов активации и корреляционных мультиграфов, позволяют оценить функциональное состояние нейронных сетей. Разработанная компьютерная модель роста нейросетевых структур позволяет проследить развитие сети на основе биофизических механизмов удлинения и ветвления нейронных отростков. |
![]() |
1 . Pimashkin A. et al. Spiking signatures of spontaneous activity bursts in hippocampal cultures // Frontiers in Computational Neuroscience. 2011. V. 5. P. 46. 2 . Marom S., Shahaf G. Development, learning and memory in large random networks of cortical neurons: lessons beyond anatomy // Quarterly Reviews of Biophysics. 2002. V. 35, № 1. P. 63–87. 3 . Wagenaar D.A., Pine J., Potter S.M. An extremely rich repertoire of bursting patterns during the development of cortical cultures // BMC Neuroscience. 2006. V. 7. P. 11. 4 . Izhikevich E.M. Polychronization: computation with spikes // Neural Computation. 2006. V. 18. № 2. P. 245–282. 5 . Izhikevich E.M., Edelman G.M. Large-scale model of mammalian thalamocortical systems // Proceedings of the National Academy of Sciences of the United States of America. 2008. V. 105, № 9. P. 3593–3598. 6 . Gritsun T. et al. Experimental analysis and computational modeling of interburst intervals in spontaneous activity of cortical neuronal culture // Biological Cybernetics. 2011. P. 197–210. 7 . Gritsun T.A., Le Feber J., Rutten W.L.C. Growth dynamics explain the development of spatiotemporal burst activity of young cultured neuronal networks in detail // PloS one / Ed. T. Wennekers. Public Library of Science, 2012. V. 7. № 9. P. e43352. 8 . Simonov A.Y., Kazantsev V.B. Model of the appearance of avalanche bioelectric discharges in neural networks of the brain // JETP Letters. 2011. V. 93. № 8. P. 470–475. 9 . Brette R. et al. Simulation of networks of spiking neurons: A review of tools and strategies. № Bat 33. P. 1–66. 10 . Ikegaya Y. et al. Synfire chains and cortical songs: temporal modules of cortical activity // Science’s. 2004. V. 304. April. P. 559–564. 11 . N?dasdy Z. et al. Replay and time compression of recurring spike sequences in the hippocampus // The Journal of Neuroscience. 1999. V. 19. № 21. P. 9497–9507. 12 . Beggs J.M., Plenz D. Neuronal avalanches in neocortical circuits // The Journal of Neuroscience. 2003. V. 23. № 35. P. 11167–11177. 13 . Pasquale V. et al. Self-organization and neuronal avalanches in networks of dissociated cortical neurons // Neuroscience. 2008. V. 153. № 4. P. 1354–1369. 14 . Rolston J.D., Wagenaar D.А., Potter S.M. Precisely timed spatiotemporal patterns of neural activity in dissociated cortical cultures // Neuroscience. 2007. V. 148. № 1. P. 294–303. 15 . Raichman N., Ben-Jacob E. Identifying repeating motifs in the activation of synchronized bursts in cultured neuronal networks // Journal of Neuroscience Methods. 2008. V. 170. № 1. P. 96–110. 16 . Eversmann B. et al. A neural tissue interfacing chip for in-vitro applications with 32k recording / stimulation channels on an active area of 2.6 mm2 // 2011 Proceedings of the ESSCIRC (ESSCIRC). IEEE, 2011. P. 211–214. 17 . Franke F. et al. High-density microelectrode array recordings and real-time spike sorting for closed-loop experiments: an emerging technology to study neural plasticity // Frontiers in Neural Circuits. 2012. V. 6. P. 105. 18 . Vassanelli S. et al. On the way to large-scale and high-resolution brain-chip interfacing // Cognitive Computation. 2012. V. 4. № 1. P. 71–81. 19 . Demarse T.B. et al. The neurally controlled animat: biological brains acting with simulated bodies // Autonomous Robots. 2001. V. 11. № 3. P. 305–310. 20 . Shahaf G. et al. Order-based representation in random networks of cortical neurons // PLoS Computational Biology. 2008. V. 4. № 11. P. e1000228. 21 . Quiroga R.Q., Nadasdy Z., Ben-Shaul Y. Unsupervised spike detection and sorting with wavelets and superparamagnetic clustering // Neural Сomputation. 2004. V. 16. № 8. P. 1661–1687. 22 . Chiappalone M. et al. Burst detection algorithms for the analysis of spatio-temporal patterns in cortical networks of neurons // Neurocomputing. 2005. V. 65–66. P. 653–662. 23 . Markram H. The Blue Brain project // Nature Reviews. Neuroscience. 2006. V. 7. № 2. P. 153–160. 24 . Reger B.D. et al. Connecting brains to robots: The development of a hybrid system for the study of learning in neural tissues // Proc. of the VIIth Int. Conf. on Artificial Life. 2000. P. 263–272. 25 . Indiveri G. et al. Neuromorphic silicon neuron circuits // Frontiers in Neuroscience. 2011. V. 5. P. 73. 26 . Seo J. et al. A 45nm CMOS neuromorphic chip with a scalable architecture for learning in networks of spiking neurons // 2011 IEEE Custom Integrated Circuits Conference (CICC). IEEE, 2011. P. 1–4. 27 . Musallam S. et al. Cognitive control signals for neural prosthetics // Science. 2004. V. 305. № 5681. P. 258–262. 28 . Carmena J.M. et al. Learning to control a brain-machine interface for reaching and grasping by primates // PLoS Biology. Public Library of Science, 2003. V. 1. № 2. P. E42. 29 . Novellino A. et al. Development of micro-electrode array based tests for neurotoxicity: assessment of interlaboratory reproducibility with neuroactive chemicals // Frontiers in Neuroengineering. 2011. V. 4. P. 4. 30 . Johnstone A.F.M. et al. Microelectrode arrays: a physiologically based neurotoxicity testing platform for the 21st century // Neurotoxicology. 2010. V. 31. № 4. P. 331–350. 31 . Morefield S. et al. Drug evaluations using neuronal networks cultured on microelectrode arrays // Biosensors and Bioelectronics. 2000. V. 15. № 7–8. P. 383–396. 32 . Tsodyks M., Pawelzik K., Markram H. Neural networks with dynamic synapses // Neural Computation. 1998. V. 10. № 4. P. 821–835. 33 . Morrison A., Diesmann M., Gerstner W. Phenomenological models of synaptic plasticity based on spike timing // Biological Cybernetics. 2008. V. 98. № 6. P. 459–478. 34 . Eberhard J.P., Wanner A., Wittum G. NeuGen: A tool for the generation of realistic morphology of cortical neurons and neural networks in 3D // Neurocomputing. 2006. V. 70. № 1–3. P. 327–342. 35 . Gleeson P., Steuber V., Silver R.A. neuroConstruct: a tool for modeling networks of neurons in 3D space // Neuron. 2007. V. 54. № 2. P. 219–235. 36 . Koene R.A. et al. NETMORPH: a framework for the stochastic generation of large scale neuronal networks with realistic neuron morphologies // Neuroinformatics. 2009. V. 7. № 3. P. 195–210. 37 . Cuntz H. et al. One rule to grow them all: a general theory of neuronal branching and its practical application // PLoS Computational Biology / Ed. A. Morrison. Public Library of Science, 2010. V. 6. № 8. P. 14. 38 . Zubler F., Douglas R. A framework for modeling the growth and development of neurons and networks // Frontiers in Computational Neuroscience. 2009. V. 3. P. 25. 39 . Hulata E. et al. Self-Regulated complexity in cultured neuronal networks // Physical Review Letters. American Physical Society, 2004. V. 92. № 19. P. 198105. 40 . Мухина И.В., Казанцев В.Б., Хаспеков Л.Г. и др. Мультиэлектродные матрицы – новые возможности в исследовании пластичности нейрональной сети // Современные технологии в медицине. 2009. Т. 1. С. 8–15. 41 . Mann H.B., Whitney D.R. On a test of whether one of two random variables is stochastically larger than the other // The Annals of Mathematical Statistics. 1947. V. 18. № 1. P. 50–60. 42 . Eichler M., Dahlhaus R., Sandk?hler J. Partial correlation analysis for the identification of synaptic connections // Biological Cybernetics. 2003. V. 89. № 4. P. 289–302. 43 . Aertsen A.M.H.J., Gerstein G.L. Evaluation of neuronal connectivity: Sensitivity of cross-correlation // Brain Research. 1985. V. 340. № 2. P. 341–354. 44 . Afraimovich V.S., Bunimovich L.A. Dynamical networks: interplay of topology, interactions and local dynamics // Nonlinearity. IOP Publishing, 2007. V. 20. № 7. P. 11. 45 . Мухина И.В., Иудин Д.И., Захаров Ю.Н и др. Стабильность и вариабильность паттернов сетевой активности развивающихся нейрональных сетей мозга: Биологические и математические модели // Сборник научных трудов XII Всероссийской научно-технической конференции «Нейроинформатика-2010» 2010. Том III. Фундаментальные проблемы науки. С. 184–192. 46 . Chao A. et al. Abundance-based similarity indices and their estimation when there are unseen species in samples // Biometrics. 2006. V. 62. № 2. P. 361–371. 47 . Prokin I.S., Kazantsev V.B. Analysis of pulsed-signal transmission in a system of interacting neural oscillators with frequency-dependent connections // Radiophysics and Quantum Electronics. 2012. V. 54. № 11. P. 763–772. 48 . Krottje J.K., Van Ooyen A. A mathematical framework for modeling axon guidance // Bulletin of Mathematical Biology. 2007. V. 69. № 1. P. 3–31. 49 . Kaiser M., Hilgetag C.C., Van Ooyen A. A simple rule for axon outgrowth and synaptic competition generates realistic connection lengths and filling fractions // Cerebral Cortex. 2009. V. 19. № 12. P. 3001–3010. 50 . Van Pelt J., Uylings H. Growth functions in dendritic оutgrowth // Brain and Mind. V. 4. № 1. P. 51–65. 51 . Goodhill G.J., Urbach J.S. Axon guidance and gradient detection by growth cones. The MIT Press, 2004. P. 95–109. |