РАСПРЕДЕЛЕННЫЙ СИНТЕТИЧЕСКИЙ ГЕННЫЙ ОСЦИЛЛЯТОР |
4 | |
2014 |
научная статья | 537.86, 537.87, 530.182 | ||
464-469 | нелинейнаядинамика, синтетические генные сети, синхронизация |
В настоящее время сложность синтетических контуров генной регуляции, которые могут быть встроены в живую клетку, весьма ограничена. В работе предложена и исследована математическая модель распределенного генного осциллятора, в котором за счет использования двух популяций клеток удается понизить число синтетических генов в клетке, что потенциально освобождает место для дополнительных функциональных генов. Показана возможность возникновения автоколебаний, исследована зависимость порога от параметров системы, продемонстрирована возможность синхронизации различных центров колебаний в модели неоднородных планарных клеточных культур. |
![]() |
1 . Jacob F., Monod J. Genetic regulatory mecha-nisms in the synthesis of proteins //Journal of mo-lecular biology. 1961. V. 3. №. 3. P. 318-356. 2 . Nandagopal N., Elowitz M.B. Synthetic biology: integrated gene circuits //Science. 2011. V. 333. V. 6047. P. 1244-1248. 3 . Rolli? S., Mangold M., Sundmacher K. Designing biological systems: systems engineering meets synthetic biology //Chemical Engineering Science. 2012. V. 69. № 1. P. 1¬-29. 4 . O’Brien E.L., Van Itallie E., Bennett M.R. Modeling synthetic gene oscillators //Mathematical biosciences. 2012. V. 236. № 1. P. 1-15. 5 . Lu T.K., Collins J.J. Engineered bacteriophage targeting gene networks as adjuvants for antibiotic therapy // Proceedings of the National Academy of Sciences. 2009. V. 106. № 12. P. 4629-4634. 6 . Lee S.K. et al. Metabolic engineering of microorganisms for biofuels production: from bugs to synthetic biology to fuels //Current opinion in biotechnology. 2008. V. 19. № 6. P. 556-563. 7 . Sayler G.S., Simpson M.L., Cox C.D. Emerging foundations: nano-engineering and bio-microelectronics for environmental biotechnology //Current opinion in microbiology. 2004. V. 7. № 3. P. 267-273. 8 . Gardner T.S., Cantor C.R., Collins J.J. Construc-tion of a genetic toggle switch in Escherichia coli //Nature. 2000. V. 403. № 6767. P. 339-342. 9 . Elowitz M.B., Leibler S. A synthetic oscillatory network of transcriptional regulators //Nature. 2000. V. 403. № 6767. P. 335-338. 10 . Stricker J. et al. A fast, robust and tunable syn-thetic gene oscillator //Nature. 2008. V. 456. № 7221. P. 516-519. 11 . Danino T. et al. A synchronized quorum of ge-netic clocks // Nature. 2010. V. 463. № 7279. P. 326-330. 12 . Anderson J.C., Voigt C.A., Arkin A.P. Environ-mental signal integration by a modular AND gate //Molecular systems biology. 2007. V. 3. № 1. Article number 133. P. 1-8. 13 . Levskaya A. et al. Synthetic biology: en-gineering Escherichia coli to see light //Nature. 2005. V. 438. № 7067. P. 441-442. 14 . Tamsir A., Tabor J.J., Voigt C.A. Robust multi-cellular computing using genetically encoded NOR gates and chemical wires //Nature. 2011. V. 469. № 7329. P. 212-215. 15 . Regot S. et al. Distributed biological computation with multicellular engineered networks // Nature. 2011. V. 469. № 7329. P. 207-211. 16 . Balagadd? F.K. et al. A synthetic Escherichia coli predator-prey ecosystem // Molecular Systems Biology. 2008. V. 4. P. 187. 17 . Jacob F., Monod J. Genetic regulatory mechanisms in the synthesis of proteins //Journal of molecular biology. 1961. V. 3. №. 3. P. 318-356. 18 . Nandagopal N., Elowitz M.B. Synthetic biology: integrated gene circuits //Science. 2011. V. 333. V. 6047. P. 1244-1248. 19 . Rolli? S., Mangold M., Sundmacher K. Designing biological systems: systems engineering meets synthetic biology //Chemical Engineering Science. 2012. V. 69. № 1. P. 1¬-29. 20 . O’Brien E.L., Van Itallie E., Bennett M.R. Modeling synthetic gene oscillators //Mathematical biosciences. 2012. V. 236. № 1. P. 1-15. 21 . Lu T.K., Collins J.J. Engineered bacteriophage targeting gene networks as adjuvants for antibiotic therapy // Proceedings of the National Academy of Sciences. 2009. V. 106. № 12. P. 4629-4634. 22 . Lee S.K. et al. Metabolic engineering of microorganisms for biofuels production: from bugs to synthetic biology to fuels //Current opinion in biotechnology. 2008. V. 19. № 6. P. 556-563. 23 . Sayler G.S., Simpson M.L., Cox C.D. Emerging foundations: nano-engineering and bio-microelectronics for environmental biotechnology //Current opinion in microbiology. 2004. V. 7. № 3. P. 267-273. 24 . Gardner T.S., Cantor C.R., Collins J.J. Construction of a genetic toggle switch in Escherichia coli //Nature. 2000. V. 403. № 6767. P. 339-342. 25 . Elowitz M.B., Leibler S. A synthetic oscillatory network of transcriptional regulators //Nature. 2000. V. 403. № 6767. P. 335-338. 26 . Stricker J. et al. A fast, robust and tunable synthetic gene oscillator //Nature. 2008. V. 456. № 7221. P. 516-519. 27 . Danino T. et al. A synchronized quorum of genetic clocks // Nature. 2010. V. 463. № 7279. P. 326-330. 28 . Anderson J.C., Voigt C.A., Arkin A.P. Environmental signal integration by a modular AND gate //Molecular systems biology. 2007. V. 3. № 1. Article number 133. P. 1-8. 29 . Levskaya A. et al. Synthetic biology: engineering Escherichia coli to see light //Nature. 2005. V. 438. № 7067. P. 441-442. 30 . Tamsir A., Tabor J.J., Voigt C.A. Robust multicellular computing using genetically encoded NOR gates and chemical wires //Nature. 2011. V. 469. № 7329. P. 212-215. 31 . Regot S. et al. Distributed biological computation with multicellular engineered networks // Nature. 2011. V. 469. № 7329. P. 207-211. 32 . Balagadd? F.K. et al. A synthetic Escherichia coli predator-prey ecosystem // Molecular Systems Biology. 2008. V. 4. P. 187. |