A non-linear system of partial differential equations, derived from the energy and mass conservation laws and the Darcy law is used for the mathematical description of gas production from a single well located at the center of a circular gas field. The physical and caloric equations are used as closing relations. This system of equations describes non-isothermal filtration of a real gas in a porous medium where the energy transfer due to heat conduction is assumed to be negligible as compared to convection. The pressure at the bottom-hole is assumed to be constant. Conditions modeling the absence of the flowing gas and heat fluxes are imposed on the external boundary, i.e., the water-driven regime of gas extraction is modeled. In the computational experiment the influence of pressure drop at the bottom hole, i.e. the influence of intensity of gas extraction, on the dynamics of pressure and temperature variations in the reservoir is investigated. These solutions are used to estimate the possibility of hydrate formation in the bottom hole region of the gas reservoir. In addition, we estimated the effect of the frequently used assumption of isothermal filtration process on the pressure field and on the total gas production.
|