The results of mathematically modeling a two-phase swirled turbulent flow in the zone of separation of the centrifugal apparatus are presented. The motion of a bearing stream of gas was modeled with the help of averaged Nave-Stocks equations for closing of which the well-known Wilcox's model of turbulence was used. On the basis of the obtained field of averaged velocities of the carrying agent, with the account of turbulent diffusion, the movement of thin-dispersed particles in Lagrangian coordinates was computed. As a result of the numerical solution, the boundary size and the efficiency of the process of fractional division of particles according to their sizes are determined.
|