Based on the numerical analysis, it is shown that local exposure of the flow to laser radiation with the wavelengths of 193.3 or 762 nm can considerably reduce the ignition delay length and increase the energy release efficiency in the combustion chamber of a modeling high-speed air-breathing engine. The airflow parameters in the combustion chamber entrance section are essentially non-uniform in the transversal direction, therefore redistribution of hydrogen injection through the struts at the same total hydrogen flow rate makes it possible to significantly increase the combustion completeness in the modeling engine duct. Using the combination of the two above ways of intensifying the combustion, it is possible to increase the combustion completeness by more than 3 times in comparison with the uniform hydrogen injection and the absence of laser radiation.
|