The article concerns the problems of the motion of drops suspended in a fluid driven by an interfacial tension gradient. The interfacial tension is assumed to depend on the temperature of the border separating the two phases and causes the movement called termocapillary drift (TCD) of homogenious suspension. A somewhat analogous situation exists with respect to electro-capillary drift (ECD) of a homogeneous suspension of spherical drops with interfacial charge of the double electric layer (DEL). As a result, an analytic solution is obtained as well as a form for the effective thermal conductivity (from the TCD problem), electric conductivity and dielectric conductivity (from the ECD problem). The dependence in the effective dielectric conductivity form explains the phenomenon of a super-high dielectric conductivity that has been experimentally observed for suspensions with thin DEL.
|